Destriping algorithm for improved satellite-derived ocean color product imagery.
نویسندگان
چکیده
While modern multi-detector sensors offer a much improved image resolution and signal-to-noise ratio among other performance benefits, the multi-detector arrangement gives rise to striping in satellite imagery due to various sources, which cannot be perfectly corrected by sensor calibration. Recently, Bouali and Ignatov (2014) [J. Atmos. Oceanic Technol., 31, 150-163 (2014)] introduced a new approach to remove relatively small detector performance-related striping from thermal infrared bands for improved sea surface temperature data. We show that this methodology, with appropriately chosen parameters and adjustments, can also be applied to remove striping of a much larger variance from the solar reflective band data. Specifically, we modify and apply this new approach to remove striping from satellite-derived normalized water-leaving radiance spectra nLw(λ) obtained from solar reflective bands. It is important that the destriping approach not be applied to the top-of-atmosphere radiances. The results show a significant improvement in image quality for both nLw(λ) spectra and nLw(λ)-derived ocean biological and biogeochemical products such as chlorophyll-a concentration, and the water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490).
منابع مشابه
Improved VIIRS and MODIS SST Imagery
Moderate Resolution Imaging Spectroradiometers (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP)/Joint Polar Satellite System (JPSS) satellites, are capable of providing superior sea surface temperature (SST) imagery. However, the swath data of these multi-detector sensors are subject to seve...
متن کاملImage reconstruction using an iterative SOM based algorithm
The frequent presence of clouds in optical remotely sensed imagery prevents space and time continuity and limits its exploitation. The aim of this study is to propose a new statistical processing approach for the reconstruction of areas covered by clouds in a time sequence of optical satellite images. The approach is an iterative SOM based algorithm and is applied here to reconstruct ocean colo...
متن کاملImpact of Aerosol Model Selection on Water-Leaving Radiance Retrievals from Satellite Ocean Color Imagery
We examine the impact of atmospheric correction, specifically aerosol model selection, on retrieval of bio-optical properties from satellite ocean color imagery. Uncertainties in retrievals of bio-optical properties (such as chlorophyll, absorption, and backscattering coefficients) from satellite ocean color imagery are related to a variety of factors, including errors associated with sensor ca...
متن کاملHourly turbidity monitoring using Geostationary Ocean Color Imager fluorescence bands
The Geostationary Ocean Color imager (GOCI) is the first geostationary ocean color satellite sensor that collects hourly images eight times per day during daylight. This high frequency image acquisition makes it possible to study more detailed dynamics of red tide blooms, sediment plumes, and colored dissolved organic matter plumes, and can aid in the prediction of biophysical phenomena. We app...
متن کاملRegularization destriping of remote sensing imagery
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory’s (JPL) hyperspectral Portable Remo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2014